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Aberrant gut microbiota dysbiosis in women with a previous history of gestational
diabetes mellitus (post-GDM) was comparable to that in adults with type 2 diabetes
mellitus (T2DM). Nonetheless, potential relationships between diet, gut microbiota, and
metabolic phenotypes in post-GDM women after delivery are yet to be discovered. In
this research, we assessed the relationship of the macronutrient intakes, gut microbiota
composition, and metabolic phenotypes (i.e., anthropometrics and glycemic control)
in post-GDM women with and without postpartum glucose intolerance (GI). About
24 post-GDM women were included in this study, 14 women were grouped in the
GI group and 10 women were grouped in the normal glucose tolerance (NGT) group
according to oral glucose tolerance test. Macronutrient intake assessment using
a 3-day dietary record, anthropometric measurements, biochemical analyses, and
fecal sampling were done during 3–6 months postpartum. Gut microbiota profiling
was determined using 16S rRNA genes sequencing targeting the V3–V4 regions.
The relationships between macronutrient intakes, gut microbiota composition, and
metabolic phenotypes were evaluated using Pearson’s correlation coefficient and
stepwise regression analyses. In this study, most post-GDM women had significantly
poor dietary fiber adherence than the nutritional recommendations. Women from the GI
group have significantly higher fasting blood glucose (FBG), HbA1c, and homeostasis
model assessment-estimated insulin resistance (HOMA-IR) levels compared to the
NGT group. The group also showed significant elevation of high-sensitivity C-reactive
protein (hs-CRP) level when compared to the normal value. Specific gut microbial
taxa derived from Proteobacteria and Bacteroidetes such as Parasutterella, Aquicella,
Haliscomenobacter, and Prevotellaceae_NK3B31_group were significantly abundant
in the GI group compared to the NGT group. Prevotellaceae_NK3B31_group was
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significantly associated with high FBG, HOMA-IR, and HbA1c levels. Low fiber and
monounsaturated fatty acids intakes were associated with Lactobacillus. Meanwhile,
Lactobacillus was associated with high body mass index, waist circumference, 2-h
postprandial blood glucose, and hs-CRP levels. Our study suggested that macronutrient
intake is an important predictor of gut microbiota dysbiosis and is associated with
obesity, low-grade inflammation, and poor glycemic control in post-GDM women.
Hence, dietary intake modification to remodel gut microbiota composition is a promising
T2DM preventive strategy in post-GDM women.

Keywords: gut microbiota, diet, obesity, insulin resistance, gestational diabetes

INTRODUCTION

Gestational diabetes mellitus (GDM) is a common pregnancy
complication and associated with 7-fold higher risk of developing
type 2 diabetes mellitus (T2DM) later in life compared to healthy
women (Bellamy et al., 2009). The relative risk of T2DM in
women with a previous history of GDM varies across countries,
ranging from 2.1 in Germany to 47.3 in the United States (Zhu
and Zhang, 2016). Biomarkers are important to predict the risk
of T2DM in post-GDM women at an early stage because the
progression of GDM to T2DM is an emerging public health
concern. Interestingly, current ongoing studies are revealing
possible metabolic cross-talk between gut microbiota and GDM.
Perturbation of normal gut microbiota composition or gut
microbiota dysbiosis, may cause host metabolism dysregulation
and is responsible for numerous diseases, including GDM
(Hasain et al., 2020). Mokkala et al. (2017) reported that the
composition of Ruminococcaceae in the first trimester was
higher and preceded the diagnosis of GDM compared to healthy
pregnant women (Mokkala et al., 2017). Meanwhile, Kuang et al.
(2017) found several gut microbiotas, including Parabacteroides
distasonis, Klebsiella variicola, and Eubacterium rectale, were
associated with maternal glucose levels in mothers with GDM
(Kuang et al., 2017). On the other hand, the amount of
beneficial butyrate-producing bacteria, such as Bifidobacterium
and Faecalibacterium, were found to be lower in women with
GDM than in normoglycemic pregnant women (Kuang et al.,
2017; Wang et al., 2018). These findings suggest that gut
microbiota could serve as a potential predictive biomarker of
glucose intolerance (GI).

The study of gut microbiota in post-GDM women is less
explored. The results reported in the limited number of studies
were contradictory (Fugmann et al., 2015; Crusell et al., 2018;
Hasan et al., 2018; Hasain et al., 2019). Crusell et al. (2018) found
the gut microbiota composition in women with GDM during
the third trimester of pregnancy and 8 months postpartum was
consistent. The gut microbiota composition was dominated by
Firmicutes and Actinobacteria (Crusell et al., 2018). However,
other studies have reported the relative abundance of Firmicutes
in post-GDM women was either reduced (Fugmann et al., 2015;
Hasain et al., 2019) or no different (Hasan et al., 2018) compared
to the normoglycemic postpartum women. The available gut
microbiota studies involving women with GDM have mostly
been from Finland, China, and Germany (Hasain et al., 2020).

These findings generally represent an urbanized population and
may not resemble the universal gut microbiota profile of women
with GDM (Gupta et al., 2017). It is necessary to study gut
microbiota composition in different geographical locations and
populations, as the profile of the dominant gut microbiota such
as Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria
was influenced by cultural and behavioral features (Gupta et al.,
2017; Senghor et al., 2018).

Among the environmental factors, a person’s dietary pattern
is the most important factor that ensures a healthy gut (Lazar
et al., 2019). During pregnancy, a low-fiber diet was reported to be
associated with a higher abundance of Sutterella and Collinsella
(Ponzo et al., 2019). Sutterella is a genus that was associated
with pro-inflammatory properties while Collinsella is a genus
that was associated with T2DM (Ponzo et al., 2019). Moreover,
total fat intake was associated with a greater abundance of
Alistipes while protein intake was associated with a greater
abundance of Faecalibacterium among women with GDM during
pregnancy (Ferrocino et al., 2018). Following delivery, changing
postpartum dietary habits is common, and the intakes could
be influenced by over-cautious, special, and traditional dietary
practices, particularly among Asian women (Mohd Yusoff et al.,
2018). While diet is well known to be linked to gut microbiota
composition during pregnancy, more studies are warranted to
better understand the dynamics of gut microbiota composition
following changes in postpartum dietary intakes among women
with histories of GDM.

The aim of this study was to assess the macronutrient intakes,
anthropometrics, and glycemic control, as well as evaluate their
associations with gut microbiota composition in post-GDM
women with and without postpartum GI. We hypothesized that
the imbalance in macronutrient intakes during the postpartum
period was associated with gut microbiota dysbiosis in post-GDM
women. Furthermore, this phenomenon may be an important
contributor to postpartum GI, and predispose women with GDM
to develop T2DM in the future.

MATERIALS AND METHODS

Study Design and Population
This cross-sectional study was designed to determine the
macronutrient intakes, anthropometrics, glycemic control,
and their associations with gut microbiota composition of
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postpartum gestational diabetes women with and without
GI. The human ethics approval clearance was approved by
the Universiti Kebangsaan’s Malaysia Human Research Ethics
Committee (UKM PPI/111/8/JEP-2018-022) for a 2-year
period, from March 2018 to February 2020. Approximately 35
postpartum women with a recent history of GDM were recruited
at 6–8 weeks postpartum using a systematic random sampling
method from the Universiti Kebangsaan’s Malaysia Medical
Centre (UKMMC) delivery records. After eligibility screening,
this study included only 24 of 35 post-GDM women without pre-
pregnancy diabetes, autoimmune diseases, and chronic diseases.
The inclusion criteria were strict because this study focusing
on postpartum GI following a recent episode of GDM during
pregnancy. Notably, possible modulators of the gut microbiota
composition such as post-GDM women on regular treatment,
including diabetic therapy, anti-inflammatory drugs, laxatives,
traditional medicine, or antibiotics/probiotics within 3 months
prior to the present study were excluded. Eleven post-GDM
women were excluded as they were not willing to participate
and did not meet the inclusion criteria. A detailed explanation
of the study protocol was provided to participants, and written
informed consent was obtained prior to their enrollment. The
first examination was performed during 6–8 weeks postpartum
to evaluate the participant’s glucose tolerance status. Following
childbirth, Malaysian women usually adhere to strict dietary
restrictions during the confinement period, especially during
the initial 30–60 days after delivery to maintain well-being,
and they gradually transition back to their normal diet (Mohd
Yusoff et al., 2018). Thus, macronutrient intakes evaluation,
anthropometric measurements, biochemical analyses, and fecal
sampling for 16S rRNA sequencing were obtained during the
second examination (between 3 and 6 months postpartum).
Moreover, lifestyle recommendations were not given to
eliminate the possible confounding factor. A detailed flowchart
of the study is summarized in the supplementary material
(Supplementary Figure 1).

Postpartum Glucose Tolerance
Assessment
All participants who met the inclusion criteria provided
their socio-demographic information and data related to
obstetric history and were then screened for glucose tolerance
using a 2-h 75 g oral glucose tolerance test (OGTT). This
assessment was done during 6–8 weeks postpartum and
considered as the first examination. Fasting blood glucose
(FBG) samples were taken after a 10-h overnight fast while
2-h postprandial blood glucose (2HPP) samples were taken
after 2-h of consumption of 75 g glucose solution. Plasma
glucose levels were determined with hexokinase and glucose-
6-phosphate dehydrogenase enzymes using the Slein method
on a Siemens ADVIA 2400 (Siemens Healthcare Diagnostics,
NY, United States). Characterization of postpartum glucose
tolerance was based on the Malaysian Clinical Practice Guidelines
(CPG) on Management of T2DM, 5th edition, 2015 (Ministry
of Health Malaysia, 2015). Participants exhibiting an FBG level
≥6.1 mmol/L and/or a 2HPP level≥7.8 mmol/L were designated

as the GI group, while participants with an FBG level less
than 6.1 mmol/L and a 2HPP level less than 7.8 mmol/L
were designated as the normal glucose tolerance (NGT) group
(Chew et al., 2012).

Macronutrient Intake Evaluation
Participants’ macronutrient intakes were assessed once during the
second examination (between 3 and 6 months postpartum) using
a 3-day dietary record (two weekdays and one weekend). Dietary
instructions were explained to the participants using the food
photograph and household measures to aid the participants to
record their dietary intake accurately. Detail of the macronutrient
intakes was calculated using Nutritionist ProTM Diet Analysis
4.0 (Axxya Systems, Woodinville, WA, United States) software.
The proportion of macronutrients was compared with Malaysian
dietary guidelines (Ministry of Health Malaysia, 2015; National
Coordinating Committee on Food and Nutrition, 2017).

Anthropometric Measurements
Pre-pregnancy body weight was self-reported, and the height
detail was obtained from the antenatal record book. The
postpartum anthropometric measurements were evaluated once
during the second examination as stated above. Postpartum
body weight was measured to the nearest 0.1 kg using a digital
scale (SECA, Hamburg, Germany). Body mass index (BMI) was
calculated by dividing participants’ body weight (kg) by the
square of their height (m2). Waist and hip circumferences were
measured at the umbilicus and trochanter level, respectively, to
the nearest 0.1 cm using a flexible measuring tape. Measurements
were repeated twice and the mean of these measurements
was calculated to increase the accuracy (Chew et al., 2012).
Participants’ waist-to-hip ratios (WHRs) were obtained as
follows: waist divided by hip measurements. Classification of
BMI, cut-off points for waist circumference, and WHR was
according to the Malaysian CPG on the Management of Obesity,
2004 (Ministry of Health Malaysia, 2004). Postpartum weight
retention was calculated by measuring the difference between
participants’ weights taken at the second examination and their
pre-pregnancy weights.

Glycemic Control Analyses
Glycemic control-related markers, including FBG, glycosylated
hemoglobin (HbA1c), insulin, total cholesterol, triglycerides,
and high-sensitivity C-reactive proteins (hs-CRP), were assessed
once during the second examination as stated above. FBG was
measured using the hexokinase method with an intra-assay of
1.2–1.8%, while HbA1c was measured using a turbidimetric
inhibition immunoassay (TINIA) method on a Roche Cobas
513 (Roche Diagnostics GmbH, Mannheim, Germany) with
an intra-assay of 1.0–1.6%. Insulin was analyzed with a
Human Metabolic Hormone Magnetic Bead Panel-Metabolism
Multiplex Assay using a MILLIPLEX R© MAP kit according to the
manufacturer’s guidelines (Merck KGaA, Darmstadt, Germany).
Insulin resistance was calculated using the homeostasis model
assessment-estimated insulin resistance (HOMA-IR) index
as follows: HOMA-IR = fasting insulin (µlU/ml) × FBG
(mmol/L)/22.5 (Lee et al., 2016). Total cholesterol levels were
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determined with an enzymatic assay using cholesterol esterase
and cholesterol oxidase conversion, followed by Trinder
endpoint with an intra-assay of 0.8–1.1%. Triglyceride levels
were analyzed using fosatti three-step enzymatic with Trinder
endpoint with an intra-assay of 0.8–1.5%, while hs-CRP values
were determined by latex-enhanced turbidimetric/immune-
turbidimetric assay with an intra-assay of 1.0–8.2%. FBG,
total cholesterol, triglycerides, and hs-CRP were evaluated
on a Siemens ADVIA 2400 (Siemens Healthcare Diagnostics,
NY, United States).

Gut Microbiota Evaluation Using
16S rRNA Sequencing Approach
Fecal Sample Collection and DNA Extraction
The fecal sample was self-collected at home during the second
examination as stated above using a sterilized fecal collection
kit and stored at 4◦C. A single stool sample was collected per
participant. The sample was transported to the laboratory in
an icebox within 2-h of collection and immediately stored at
−80◦C until DNA extraction. Total genome DNA was extracted
from 500 mg of the fecal sample using a Fast DNATM SPIN
Kit for soil (MP Biomedical, United States) in accordance with
the manufacturer’s guidelines and kept frozen at −20◦C until
used. A NanoDrop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, United States) and electrophoresis were used to
assess the quantity and quality of the total DNA.

16S rRNA Amplicons Generation, Library Preparation,
and Sequencing
The 16S rRNA genes targeting the V3–V4 regions were amplified
using the barcoded 341F/806R primer pair (341F: 5′-CCT AYG
GGR BGC ASC AG-3′; 806R: 5′-GGA CTA CNN GGG TAT CTA
AT-3′) (Caporaso et al., 2011). PCR reactions were performed
using Phusion R© High-Fidelity PCR Master Mix (New England
Bio Labs). PCR amplicons bands between 400 and 450 bp were
validated as containing qualitatively sufficient bacterial DNA.
These PCR amplicons were then mixed in equidensity ratios and
purified with a Qiagen gel extraction kit (Qiagen, Germany).
Library preparation was performed using a NEBNext R© UltraTM

DNA Library Prep Kit (New England Bio Labs, United States).
The library quality was checked using a Qubit 2.0 fluorometer
(Life Technologies, Carlsbad, CA, United States) and Q-PCR.
Finally, the library sequencing was conducted with the Illumina
HiSeq2500 platform to generate 250 bp paired-end raw reads.
All procedures were performed by Novogene Co., Ltd., located
in Beijing, China1.

Sequence Processing and Bioinformatics Analysis
Sequence data were processed using the default pipeline and
computed workflow. First, paired-end sequence merging was
performed using FLASH (Magoè and Salzberg, 2011), followed by
quality filtering according to QIIME to obtain high-quality clean
tags (Caporaso et al., 2010; Bokulich et al., 2013). The UCHIME
algorithm was used for chimera assessment and removal (Edgar
et al., 2011; Haas et al., 2011). Further sequence analyses

1https://en.novogene.com/

were conducted using UPARSE for taxonomic assignments of
operational taxonomic unit (OTU) selection based on the 97%
sequence’s similarity (Edgar, 2013). Alignments were performed
using SILVA-based bacterial reference database (Silva release
128) for each OTU representative sequence using a protocol
within an open-source workflow implemented by mothur (Quast
et al., 2013). OTUs abundance data was later normalized
using a standard of sequence number corresponding to the
sample with the lowest number of sequences per sample (i.e.,
60,960 reads/sample). Rarefaction analyses were performed to
evaluate the sampling coverage for each sample based on the
selected sequence depth.

Alpha Diversity and Beta Diversity
Subsequent analysis of alpha (α) and beta (β) diversity were
all performed based on the rarified data. All measures of
community diversity and similarity, including Shannon, Chao
1, Phylogenetic Diversity (PD_whole_tree), and Simpson’s
diversity indices were calculated from the sequence data
within QIIME to quantify α diversity. Comparative community
compositional analyses of β diversity were performed to
evaluate differences of samples in their species complexity.
The estimates of weighted and unweighted UniFrac distances
among samples were first calculated by QIIME software (Version
1.7.0). These estimates were later subjected to downstream
analyses using several packages implemented in R software
(version 2.15.3). The FactoMineR and ggplot2 packages (version
2.15.3) were used for clustering analysis via the hierarchical
clustering method. Multidimensional reduction and principal
coordinate analysis (PCoA) ordination plots were generated
to visually compare gut microbiota composition between
samples from different participants and their groupings based
on the two largest eigenvalues. PCoA analysis was displayed
by WGCNA package, stat packages, and ggplot2 package in
R software (version 2.15.3).

Statistical Analysis of Participant’s
Characteristics and Gut Microbiota
Profile
Comparison of participant characteristics (socio-demographic
data, obstetrics data, macronutrient intakes, anthropometric
measurements, and glycemic control parameters) between GI
and NGT groups were analyzed using SPSS software, version 23
(SPSS, Chicago, IL, United States). The distribution of the data
was tested based on skewness and kurtosis. t-tests were used
to determine the difference of normally distributed continuous
data while Mann–Whitney tests were used to investigate the
difference of not normally distributed continuous data between
the two groups. The Pearson’s Chi-square test was used to
test the difference of categorical data between the two groups.
Comparison of macronutrient intakes and glycemic control
parameters with the recommended value was performed using a
one-sample t-test for normally distributed data and sign test for
not normally distributed data. p-value < 0.05, p-value < 0.01, and
p-value < 0.001 were considered to be statistically significant and
denoted as ∗, ∗∗, and ∗∗∗, respectively.
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Comparison of the top 10 relative abundance of the gut
microbiota at the phylum and genus level between both groups
was visualized as stacked bars of each participant using GraphPad
Prism software, version 8.0.2. To test for significant differences in
α indices of gut microbiota between different glucose tolerance
groups (GI vs NGT), samples were analyzed using a non-
parametric Wilcoxon test. A p-value below 0.05 indicated
significant differences in pairwise mean comparisons. The β

diversity measurement by multivariate hypothesis testing was
conducted using Adonis functions in the vegan package. OTUs
with the highest correlations with the PCoA x and y component
axes were identified based on Pearson’s correlation coefficients
using the corr function.

Further statistical analysis to distinguish gut microbiota
communities between GI and NGT groups was performed by
linear discriminant analysis (LDA) combined with effect size
measurements (LEfSe). Using LEfSe software, the LDA scores’
histogram presents species (from the phylum down to the genus
level) whose abundance shows significant differences between
the two groups (Segata et al., 2011). The α-value for the
pairwise Wilcoxon test was set at 0.05, while the threshold
on the logarithmic LDA score for discriminative features was
set at 2.0. Besides, metastats were used to determine the
gut microbial taxa that statistically different between the two
groups based on their abundance. Metastats analysis is a strict
statistical method where the p-value was calculated using the
permutation test method while the q-value was calculated by
the method of Benjamini and Hochberg false discovery rate
(FDR) (White et al., 2009). Metastats results with a q-value
less than 0.5 were considered to be statistically significant. All
analyses were performed in the programming and statistical
software R (version 2.15.3).

The strength of relationships between gut microbiota
composition and macronutrient intakes, anthropometrics, and
glycemic control were evaluated using Pearson’s correlation
coefficient analysis and visualized using a heat map. All relevant
parameters were logged transformed, and Pareto scaled k-nearest
neighbor (KNN) algorithm was used to estimate missing
values. Macronutrient intake, anthropometric, and glycemic
control parameters correlated with the relative abundance of
the 60 gut microbial taxa. Only 60 gut microbial taxa at
the genus level were selected as the rest of the OTU data
were excluded from the OTU data analysis, which contained
>50% missing values. Further analysis to test the significant
influence between these parameters and the gut microbial taxa
was assessed using stepwise linear regression analysis. Evaluation
of the association between the predictor and dependent
variables showed better predictions when the combinations of
predictors were chosen through stepwise methods. Association
of macronutrient intakes and gut microbial taxa was performed
by selecting macronutrient intake parameters as the predictor
and gut microbial taxa as the dependent variable. By contrast,
the association of gut microbial taxa with anthropometric
and glycemic control parameters was performed by selecting
gut microbial taxa as the predictor while the anthropometric
and glycemic control parameters were selected as dependent
variables. Both Pearson’s correlation coefficient and stepwise

linear regression analyses were performed using SPSS version
23. p-value < 0.05, p-value < 0.01, and p-value < 0.001 were
considered to be statistically significant and denoted as ∗, ∗∗,
and ∗∗∗, respectively.

RESULTS

Characteristics of the Participants
The characteristics of the post-GDM women are summarized
in Table 1 and Supplementary Table 1. Twenty-four post-
GDM women participated in this study and were grouped
based on the postpartum glucose tolerance test; 14 women were
grouped in the GI group, and ten were grouped in the NGT
group. Among 14 post-GDM women from the GI group, eight
(57.1%) women have impaired glucose tolerance (IGT), one
(7.1%) woman has combined impaired fasting glucose (IFG)
and IGT, and five (35.7%) women have diabetes (Table 1).
Majority of the participants were above 30 years old, obese, and
of Malay ethnicity. The NGT group had a significantly higher
education level than the GI group (p < 0.05). Pharmacological
requirements during pregnancy (i.e., insulin and metformin)
were significantly higher in the GI group. Women from the GI
group have a lower percentage of exclusive breastfeeding than
the NGT group (28.6%). Most of the macronutrient intakes
of these women showed no significant difference between the
two groups except for protein intakes, which was significantly
lower in the GI group than in the NGT group (Table 1).
Total cholesterol intakes were higher in the GI group than the
NGT group, though it was not statistically significant (Table 1).
Based on the anthropometric assessments, the GI group showed
greater elevation of postpartum weight gain by 4.95 kg and had
higher BMI values, waist circumference, and obesity percentage
compared to the NGT group. The FBG and 2HPP glucose
levels during OGTT at the first visit assessment, as well as
FBG, HbAIc, HOMA-IR, and triglycerides levels during the
second visit assessment were significantly higher in the GI
group compared to the NGT group (p < 0.05) (Table 1).
The comparisons of the macronutrient intake and glycemic
control parameters of both groups with the recommended
value are shown in Supplementary Table 2. Both groups
consumed very low total dietary fiber intakes (p < 0.001)
and higher total cholesterol intakes compared to the Malaysian
dietary guidelines (Ministry of Health Malaysia, 2015; National
Coordinating Committee on Food and Nutrition, 2017). The
rest of the macronutrients were within the recommended range.
Meanwhile, the GI group showed a significant elevation of
hs-CRP levels than the recommended value. Besides, both
groups showed significantly high HOMA-IR compared to the
recommended value by the Malaysian CPG on Management
of Type 2 Diabetes Mellitus, 5th edition, 2015 (Supplementary
Table 2; Ministry of Health Malaysia, 2015).

Sequencing Summary
Rarefaction analyses showed that sequencing efforts were
consistent across replicate samples and treatment groups
at a depth of 60,960 sequences per sample, as denoted

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 680622

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-680622 June 19, 2021 Time: 18:7 # 6

Hasain et al. Gut Dysbiosis and Macronutrients in Post-GDM

TABLE 1 | Characteristics of post-gestational diabetes mellitus women categorized by postpartum glucose tolerance.

Characteristics Glucose intolerance (N = 14) Normal glucose tolerance (N = 10) p-Value

Age (years) 33.71 ± 3.83 35.90 ± 3.54 0.169

Pre-pregnancy BMI (kg/m2) 29.18 ± 5.65 29.49 ± 5.20 0.895

Ethnicity [n (%)]

Malay 12 (85.7) 10 (100) 0.212##

Others 2 (14.3) 0 (0)

Education level [n (%)]

Secondary 7 (50.0) 1 (10.0) 0.040##*

Tertiary 7 (50.0) 9 (90.0)

Number of children 3 ± 1 3 ± 1 0.212

Family history of T2DM [n (%)] 12 (85.7) 10 (100) 0.170##

Pharmacological requirement during pregnancy [n (%)] 10 (71.4) 3 (30.0) 0.045##*

Exclusive breast feeding [n (%)] 4 (28.6) 5 (50.0) 0.285##

OGTT assessment (6–8 weeks postpartum)

FBG (mmol/L) 5.8 ± 0.94 4.68 ± 0.40 0.002**

2HPP (mmol/L) 9.00 (7.88–9.00) 5.65 (4.53–6.48) <0.001#***

Glucose intolerance classification [n (%)]

IFG 0 (0)

IGT 8 (57.1)

IFG + IGT 1 (7.1)

T2DM 5 (35.7)

Second visit assessment (3–6 months postpartum)

Months after delivery (months) 3.64 ± 1.64 4.4 ± 1.26 0.245

Macronutrient intakes

Total energy intakes (kcal/day) 1709 ± 360 1694 ± 163 0.905

Carbohydrate (% total kcal) 52.17 ± 5.09 49.89 ± 5.45 0.305

Fat (% total kcal) 32.25 (27.96–5.88) 32.26 (28.97–35.74) 0.953#

Proteins (% total kcal) 15.18 (14.51–16.46) 19.00 (16.12–20.06) 0.026#*

Cholesterol intakes (mg/day) 286.34 (149.94–335.33) 200.66 (126.49–369.98) 0.770#

Saturated fat (g/day) 10.60 ± 4.35 10.12 ± 3.56 0.776

Monounsaturated fat (g/day) 9.55 ± 3.83 11.37 ± 5.25 0.335

Polyunsaturated fat (g/day) 8.62 ± 3.23 9.07 ± 3.74 0.752

Total sugar (g/day) 24.73 (20.93–37.27) 24.09 (15.36–45.29) 0.770#

Total dietary fiber (g/day) 4.79 (2.46–6.57) 5.12 (3.66–11.91) 0.364#

Anthropometric measurements

Weight gain (kg) 4.65 ± 2.57 0.81 ± 5.80 0.075

BMI (kg/m2) 31.02 ± 6.29 29.95 ± 4.41 0.650

Waist circumference (cm) 94.54 ± 11.79 91.95 ± 8.03 0.555

Waist to hip ratio 0.85 ± 0.05 0.84 ± 0.06 0.789

Obesity [n (%)] 10 (71.4) 6 (60.0) 0.214##

Glycemic control parameters

FBG (mmol/L) 6.35(5.18–7.40) 4.65(4.25–5.05) 0.004#**

HbAIc (%) 5.95(5.48–6.78) 5.20(5.00–5.30) 0.009#**

Fasting insulin (µlU/ml) 19.62(7.61–47.04) 7.14(0.00–77.33) 0.318#

HOMA-IR (mmol/L* µlU/ml) 12.42(10.12–14.47) 9.09(8.31–9.88) 0.001#***

Total cholesterol (mmol/L) 4.75(4.45–5.10) 5.05(4.15–6.40) 0.573#

Triglycerides (mmol/L) 1.21(0.99–1.61) 0.74(0.64–1.05) 0.021#*

hsCRP (mg/L) 6.99 ± 4.75 4.89 ± 5.50 0.329

Data are presented as median (Q1–Q3), mean ± standard deviation or as n (%).
Significance difference between two groups was calculated with t-test except for #Mann–Whitney U test and ##Pearson’s Chi-square test.
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 were considered as statistically significant.
BMI, body mass index; T2DM, type 2 diabetes mellitus; OGTT, oral glucose tolerance test; FBG, fasting blood glucose; 2HPP, 2-h postprandial blood glucose; IFG,
impaired fasting glucose; IGT, impaired glucose tolerance; HbAIc, glycosylated hemoglobin; HOMA-IR, homeostasis model assessment-estimated insulin resistance;
hs-CRP, high-sensitivity C-reactive protein.
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by total percentage coverage higher than 98%. We could
sample a large portion of the OTUs and diversity present
while still retaining a large number of samples within
each group (GI and NGT). After quality filtering, the 16S
rRNA amplicon data set produced 2,081,515 high-quality
reads. In total, we observed 1593 OTUs defined at 97%
sequence identity.

Gut Microbial Community Composition
in the GI and NGT Groups
The relative abundance of the gut microbiota composition
between GI and NGT groups varied at multiple taxonomic
levels. General patterns of the top 10 bacterial phylum-level
contributions to gut microbiota were shown according to glucose
tolerance grouping (Figure 1A). The three most abundant
phyla present in both groups were Bacteroidetes, Firmicutes,
and Proteobacteria. However, the GI group had a relatively
higher abundance of Bacteroidetes and a lower abundance of
Firmicutes than in the NGT group. At the genus level, the
predominant genera in the GI group included Prevotella_9
and Bacteroides (Figure 1B). Consistently, further analysis
represented by the heat map of the top 56 genera showed
the abundance of genera was dominated more by Prevotella_9
and Bacteroides in the GI group than in the NGT group
(Supplementary Figure 2).

Gut Microbial Alpha Diversity in the GI
and NGT Groups
Variation of the gut microbiota community structure (α
diversity) within each woman was evaluated based on species
richness (Chao_1 index), evenness (Shannon and Simpson’s
index), and phylogenetic diversity (PD_whole_tree index),
as shown in Figure 2. Overall, post-GDM women in the
GI group exhibited a gut microbial community with lower

richness, evenness, and an almost similar phylogenetic
diversity compared to the NGT group. However, further
analysis using the non-parametric Wilcoxon test showed no
significant difference in α diversity between GI and NGT
groups (p > 0.05).

Gut Microbial Beta Diversity in the GI and
NGT Groups
Next, PCoA analysis based on OTU abundance using Bray–
Curtis (BC) distance showed that the ordination pattern of gut
microbiota in the participants associated with different glucose
tolerance slightly overlapped between the two groups (Figure 3).
However, the same ordination analysis on a phylogenetic
relationship using the UniFrac (UF) distance indicated that the
gut microbiota structure overlapped considerably (Figure 3B).
Moreover, hypothesis testing using permutational multivariate
analysis of variance (PERMANOVA) for both BC and UF
distance did not significantly differ in the centroid of gut
microbiota community abundance (β diversity) between GI
and NGT groups (Figures 3A,B). Significant dispersion of
the gut microbiota across respondents was detected using the
betadisper test on the BC distance (p < 0.05) from both the
NGT and GI groups, though not significant was apparent
when tested on the UF distance (Figures 3A,B). We also
plotted the ordination of the gut microbiota community
based on the BMI status (Figure 3C). However, the gut
microbiota community was scattered and deemed comparable
between normal, overweight, and obese women (Figure 3C).
Interestingly, several numbers of genera, including Bacteroides,
Prevotella_9, Prevotella_2, Faecalibacterium, Blautia, and
(Eubacterium)_hallii_ groups were found to be highly correlated
with the PCoA1 and PCoA2 axes, suggesting their presence
might affect the overall gut microbiota composition among the
women (Figure 3D).

FIGURE 1 | (A) Top 10 relative abundance of the gut microbiota at the phylum level between GI and NGT groups. (B) Top 10 relative abundance of the gut
microbiota at the genus level between GI and NGT groups. Each stacked bar resembles the relative abundance of the gut microbiota of one post-GDM woman. GI,
glucose intolerance; NGT, normal glucose tolerance.
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FIGURE 2 | Box plots showing the alpha diversity of the gut microbiota of post-GDM women in the GI and NGT groups. (A) Simpson index, (B) Shannon index,
(C) Chao_1 index, and (D) PD_whole_tree index. p-value obtained from the non-parametric Wilcoxon test. p-value < 0.05 was considered as statistically significant.
GDM, gestational diabetes mellitus; GI, glucose intolerance; NGT, normal glucose tolerance; PD, phylogenetic diversity.

Gut Microbiota Signature in the GI Group
and NGT Groups
LEfSe scores were computed for differentially abundant
taxa across both groups (Figure 4). Phylum Proteobacteria
and the parent genus Parasutterella were identified as the
biomarkers for the GDM group, while genus Prevotella_2, family
Clostridieaceae_1, and genus Clostridium_sensu_stricto_1
were the biomarkers for the NGT group (Figure 4).
Moreover, several unique gut microbiotas were discovered
and differed significantly between GI and NGT groups
at multiple levels using metastats analysis. At the genus
level, Haliscomenobacter, Prevotellaceae_NK3B31_group,
and Aquicella were the top genera that were significantly
abundant in the women with GI, while Polycyclovorans and
Acidibacter were significantly abundant in the NGT group
(Figure 5).

Correlation of Gut Microbiota
Composition With Macronutrient Intakes
and Metabolic Phenotypes in Post-GDM
Women
Using Pearson’s correlation coefficient analysis, few gut
microbial taxa showed moderate correlations (0.5 ≥ r ≤ 0.7)
and mostly showed weak correlations (0.3 ≥ r ≤ 0.49) with
the macronutrient intake, anthropometric, and glycemic
control parameters (Figure 6 and Supplementary Table 3).
Among the macronutrient intakes, protein intakes had
moderate positive correlation with relative abundance of
Desulfovibrio (r = 0.542; p < 0.01; Figure 6). Comparatively,
cholesterol intakes showed moderate negative correlation with

relative abundance of Ruminococcaceae_UCG002 (r = −0.547;
p < 0.05; Figure 6). Among the gut microbial taxa, we found
that Prevotellaceae_NK3B31_group had moderate positive
correlations with glycemic control parameters, such as HbA1c
(r = 0.680; p < 0.01), FBG (r = 0.589; p < 0.01), and HOMA-IR
levels (r = 0.588; p < 0.01). On the other hand, Desulfovibrio
showed negative correlation with fasting insulin levels
(r = −0.532; p < 0.01) while Acidibacter negatively correlated
with postpartum OGTT_2HPP glucose levels (r = −0.530;
p < 0.01). Moreover, Clostridum_sensu_stricto_1 (r = −0.612;
p < 0.01) and Ruminococcaceae_UCG014 (r = −0.547; p < 0.01)
showed significant negative correlation with postpartum weight
gain (Figure 6 and Supplementary Table 3).

Association Between Macronutrient
Intakes, Gut Microbiota Composition,
and Metabolic Phenotypes in Post-GDM
Women
The significant associations between macronutrients, gut
microbial taxa, anthropometrics, and glycemic control based on
stepwise linear regression analysis are summarized in Figure 7
and Supplementary Table 4. Most gut microbiota predictions
by macronutrient intakes showed low to moderate significant
associations. Ruminococcaceae_UCG002 was moderately
predicted by protein (linearly) and cholesterol intakes (inversely;
r2 = 0.572, p = 0.001). Phascolarctobacterium showed lower
prediction by fiber (linearly) and total sugar intakes (inversely;
r2 = 0.437, p = 0.002). For anthropometrics, postpartum
BMI was moderately predicted by Lactobacillus and the
Ruminococcus_torques_ group, though it inversely predicted
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FIGURE 3 | The comparisons of the gut microbiota community (β diversity) between GI (red circle) and NGT (blue) groups. (A) Principal coordinate analysis (PCoA)
plot based on the OTUs relative abundance using the Bray–Curtis (BC) distance. (B) PCoA plot based on the phylogenetic relationship using the UniFrac (UF)
distance. The larger shapes are the centroids and linear lines are connected from the samples to the centroid for each group. (C) PCoA plot based on the OTUs
relative abundance using the BC distance according to the BMI classification [normal (square), overweight (triangle), and obese (circle)] between GI (red circle) and
NGT (blue) groups. PCoA1 and PCoA2 account for the horizontal and the vertical variances, respectively. The symbol # indicates p-value for comparison between GI
and NGT groups. The symbol ∼ indicates p-value for comparison between BMI status. p-value < 0.05 was considered as statistically significant. (D) Correlation plot
showing the OTUs with the high correlation with first (PCoA1) and second (PCoA2) axes. The red color indicates a positive correlation and the blue color indicates a
negative correlation. GI, glucose intolerance; NGT, normal glucose tolerance; MDS, multidimensional scaling; BMI, body mass index; OTU, operational taxonomic
unit.

by Bifidobacterium, Lachnospira, and Romboutsia (r2 = 0.501,
p = 0.001). For glycemic control parameters, we identified several
strong significant predictions. For instance, a group of gut
microbial taxa, including Prevotellaceae_NK3B31_group,
Methanobrevibacter, Ruminococcaceae_UCG014 were
linearly predicted, while (Eubacterium)_hallii__group,
Bacteroides, and Acidibacter were inversely predicted FBG
(r2 = 0.959, p = 0.001) and HOMA-IR levels (r2 = 0.947,
p = 0.001). Postpartum 2HPP blood glucose was mainly
predicted by Ruminococcaceae_UCG014 and Lactobacillus
(r2 = 0.872, p = 0.001). Meanwhile, fasting insulin levels were
strongly predicted by the Eubacterium_rectale_group and

inversely predicted by Desulfovibrio, Faecalibacterium, and
Catenibacterium (r2 = 0.760, p = 0.01). Triglycerides levels were
inversely predicted by Barnesiella, Alloprevotella, Dialister, and
Acidibacter but were linearly predicted by Catenibacterium
(r2 = 0.750, p < 0.001). Postpartum OGTT_FBG was linearly
predicted by Dialister and Methanobrevibacter (r2 = 0.600,
p = 0.001). Besides, hs-CRP levels were predicted linearly
by Lactobacillus and inversely by Ruminococcaceae_UCG014
(r2 = 0.566, p = 0.001). Ruminococcaceae_UCG002 linearly
predicted the total cholesterol (r2 = 0.477, p = 0.001) while
Prevotellaceae_NK3B31_group linearly predicted HbA1c levels
(r2 = 0.463, p = 0.001; Figure 7 and Supplementary Table 4).
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FIGURE 4 | Linear discriminant analysis (LDA) effect size (Lefse) analysis shows differently abundant gut microbial taxa down to genus level between GI and NGT
groups. (A) Cladogram represents the predominant gut microbial taxa in the GI and the NGT groups. The point in the center of the cladogram reflects the root of the
tree (bacteria) while the innermost ring reflects the phylum level. Subsequent outer rings reflect the next taxonomic level (i.e., class, order, family, and genus). (B) The
histogram represents the LDA score computed for each differently abundant gut microbial taxon between GI and NGT groups. The α-value <0.05 and LDA score
≥2.0 were considered statistically significant.

FIGURE 5 | Box plots showing the top six relative abundance of the genera that significantly differed between GI and NGT groups using metastats corrected by the
Benjamini–Hochberg method. The box represents the interquartile range (IQR), the inside line represents the median, the whisker represents values within 1.5 × IQR
of the first and third quartile, and the circle represents the outliers. ∗Genera with q-value < 0.05 were considered statistically significant. GI, glucose intolerance;
NGT, normal glucose tolerance.

DISCUSSION

The prevalence of T2DM has been found to increase steadily
at an earlier age among post-GDM women (Fugmann et al.,
2015; Zhu and Zhang, 2016). Thus, it is crucial to elucidate
a new potential predictor to discover the early onset of
T2DM among post-GDM women. Recent studies have

shown a positive interest in gut microbiota dysbiosis and
GI in women with GDM (Kuang et al., 2017; Ferrocino
et al., 2018; Ma et al., 2020). We used a novel approach
to study the association between macronutrient intakes,
metabolic phenotypes, and gut microbiota composition during
the postpartum period in women with a previous GDM
during pregnancy.
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FIGURE 6 | The correlation heat map of the gut microbiota composition with macronutrient intake, anthropometric, and glycemic control variables. Pearson’s
correlation coefficient between top 60 gut microbial taxa at the genus level and macronutrient intake, anthropometric, and glycemic control parameters are indicated
by colors (red, positive; green, negative). BMI, body mass index; OGTT, oral glucose tolerance test; FBG, fasting blood glucose; 2HPP, 2-h postprandial blood
glucose; HbAIc, glycosylated hemoglobin; HOMA-IR, homeostasis model assessment-estimated insulin resistance; hs-CRP, high-sensitivity C-reactive protein;
SAFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty acids.

Our results indicated that Bacteroidetes was the predominant
phyla in post-GDM women during postpartum, while the
abundance of Firmicutes was lower in the GI group than in
the NGT group. Fugmann et al. (2015) had explored the gut
microbiota composition between 42 post-GDM women and 35
women without GDM at 3–16 months postpartum. Similarly, half
of the post-GDM women have GI and the relative abundance of
Firmicutes was lower in the post-GDM women (Fugmann et al.,
2015). These findings resembling the gut microbiota profile of
adults with T2DM, which suggests that gut microbiota dysbiosis
may be a potential predictive biomarker of possible T2DM risks
in post-GDM women (Larsen et al., 2010; Qin et al., 2012;
Fugmann et al., 2015). However, Hasan et al. (2018) did not
find significant differences in the gut microbiota composition
among 60 post-GDM women and 68 women without a history
of GDM after 5 years postpartum. By contrast, Zhang et al. (2013)
found that the abundance of Firmicutes and Clostridia were more
dominant in adults with T2DM than in the healthy controls
(Zhang et al., 2013). Although we did not observe a significant
difference in α and β diversity between the two groups, several
gut microbial taxa exhibited a significant difference in abundance
between GI and NGT groups. For instance, Proteobacteria
and Parasutterella were primarily detected in the GI group.
Proteobacteria is known to be a potential microbiota signature
of dysbiosis and linked to obesity and T2DM (Shin et al., 2015;
Nuli et al., 2019).

Interestingly, we have found nine moderate significant
correlations between macronutrients, gut microbial taxa, and

metabolic phenotypes using a Pearson’s correlation coefficient
analysis. Besides, approximately 14 significant predictions
of gut microbial taxa by macronutrients were identified
using stepwise regression analysis. Results of the present
study indicated that low protein, high cholesterol, and high
monounsaturated fatty acids (MUFA) intakes moderately
reduced the relative abundance of gut microbial taxa that
belonged to Firmicutes in post-GDM women. Moreover, low
fiber intakes and high total sugar significantly reduced the relative
abundance of Phascolarctobacterium. Phascolarctobacterium is
a member of Firmicutes and was reported to be correlated
with cruciferous vegetable diet (Li et al., 2009). Wu et al.
(2017) found Phascolarctobacterium had a high colonization
rate and conferred benefits to host metabolism by producing
short-chain fatty acids (SCFAs) (Zhang et al., 2015; Wu
et al., 2017). Therefore, the imbalance in protein, cholesterol,
MUFA, sugar, and fiber intakes may be responsible for the
depletion of the relative abundance of Firmicutes, while also
contributing to host dysregulation among post-GDM women
with GI.

More importantly, approximately 13 predictions of
metabolic phenotypes by gut microbial taxa were identified.
The Prevotellaceae_NK3B31_group, which was significantly
abundant in the GI group, was among the main gut
microbiota linked to the elevation of FBG, HOMA-IR,
and HbA1c levels. Egshatyan et al. (2016) noted that the
relative abundance of Prevotella was positively correlated
with carbohydrate intakes, and representation of Prevotella
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FIGURE 7 | The summary of the genera that significantly associated with macronutrients, anthropometrics, and glycemic control. Only the most significant genera
that influence the associations were shown. SAFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; BMI, body mass
index, WHR, waist to hip ratio; OGTT, oral glucose tolerance test; FBG, fasting blood glucose; 2HPP, 2-h-post prandial blood glucose; HOMA-IR, homeostasis
model assessment-estimated insulin resistance; hs-CRP, high-sensitivity C-reactive protein.

in the high-fat-protein cluster was found to be significantly
associated with adults with insulin resistance (Egshatyan et al.,
2016; Díaz-Rizzolo et al., 2020). In a study of gut microbiota
composition of 41 pregnant women with GDM, Ferrocino
et al. (2018) showed that Prevotella was linearly associated
with HbA1c levels (Ferrocino et al., 2018). The presence or
increased abundance of Prevotellaceae_NK3B31_group might
have worsened GI in the GI group through their mucin-
degrading properties, which may weaken the epithelial layer
of the gut, promote metabolic endotoxemia, and trigger
low-grade inflammation, leading to insulin resistance and
hyperglycemia in women with GDM (Wright et al., 2000;
Hasain et al., 2020).

The present study also found that lower MUFA and fiber
intakes increased the relative abundance of Lactobacillus. Further
analyses showed that the elevation of Lactobacillus and reduction
of Bifidobacterium were associated with obesity. Consistent
findings were observed in an earlier study that had involved
134 obese, 38 overweight, 76 lean, and 15 anorexic subjects
(Million et al., 2013). Our study also indicated that elevation

of Lactobacillus increased hs-CRP levels. Similarly, Lactobacillus
species were predominant among 18 adults with T2DM and may
be linked with low-grade inflammation (Larsen et al., 2010).
Besides, Lactobacillus and Ruminococcaceae_UCG014 showed a
linear relationship with postpartum 2HPP glucose levels. Similar
associations were noted in studies involving 70 pregnant women
who were obese and overweight (Gomez-Arango et al., 2016) and
those in the first trimester who later developed GDM (Mokkala
et al., 2017). We postulated that the elevation of these two bacteria
might be related to a higher positive energy balance that leads
to adiposity, which may trigger low-grade inflammation and
attenuate insulin sensitivity causing GI in post-GDM women
(Hasain et al., 2020).

Notable limitations associated with this study require further
consideration. The main limitations are small sample size, high
prevalence of GI, and lack of a healthy control group. The
main objective of this study was to elucidate the relationship
between diet, gut microbiota, and metabolic phenotypes in post-
GDM women. Post hoc power analysis calculation using G∗Power
analysis version 3.1.9.4 showed that the power analysis was
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sufficient (82.5%) to detect a significant correlation between diet
and gut microbial taxa (Cohen’s effect size = 0.55) with a statistical
significance of 0.05 and 24 samples. However, this number
was small to compare the participant’s characteristics between
GI and NGT groups. For example, the insufficient sample size
might have caused a higher percentage of GI among post-GDM
women at the early postpartum period. Besides, the majority
of the recruited post-GDM women have pre-pregnancy obesity,
required pharmacological intervention during pregnancy, and
a lower percentage of exclusive breastfeeding was observed
among post-GDM women with GI. These characteristics were
the possible factors of persistent GI following a history of GDM
(Benhalima et al., 2019). Moreover, assessment of both FBG
and 2HPP blood glucose levels using a 2-h 75 g OGTT might
have lead to a higher percentage of GI compared to assessment
of FBG alone during the postpartum period (Lawrence et al.,
2010). In addition, high early postpartum GI among post-GDM
women may due to underlying undiagnosed diabetes before
pregnancy (Mukerji et al., 2012). On the other hand, the α and
β diversity of the gut microbiota between the two groups were
not significant most probably because participants from both
groups have recent history of GDM, small sample size, and no
healthy women were included as the control group. Besides, it
was not possible to demonstrate the gut microbiota shift from
pregnancy to delivery as only single fecal samples were taken after
delivery. Therefore, a larger sample size, inclusion of a healthy
control group, and multiple fecal sampling at different pregnancy
stages may provide a more significant comparison and would
help to ascertain whether the findings could be adopted clinically.
Moreover, some of the relationships between gut microbiota
and host metabolism contradicted earlier studies, which was
possibly due to microbiota being strain-specific. Consequently,
the shotgun metagenomic approach is preferable because the
16S rRNA sequencing approach has limited robustness (Ranjan
et al., 2016). Finally, although we observed a significant
association between all parameters, we were unable to find
a definitive causal relationship between the gut microbiota
and GDM women because we employed a cross-sectional
study design.

CONCLUSION

Overall, macronutrient intakes were found to significantly
preserved gut ecology and biochemical in post-GDM women.
Macronutrient intakes may exert beneficial or detrimental
effects on the gut microbial taxa and the host factors.
We found that imbalance in the macronutrient intakes was
associated with perturbation of pathogenic pathobionts, such
as Prevotellaceae_NK3B31_group and Lactobacillus leading to
metabolic dysregulation especially in the GI group. Therefore,
dietary interventions or probiotics supplementation may be ideal
for modulating gut microbiota composition and promoting good
health outcomes among these women. However, the direction
of crosstalk between diet and gut microbiota dysbiosis requires
further validation and comparison. Thus, future research should
include extensive longitudinal data and include multi-omics

approaches, such as metagenomics, transcriptomics, proteomics,
and metabolomics, which are warranted to determine diet-gut
microbiota interactions as a potential preventive T2DM strategy
in post-GDM women.
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